生信自学网-速科生物-生物信息学数据库挖掘视频教程

主页 > GEO >

单细胞转录组测序的常用方法

单细胞测序一直是科学家关注的一个热点,主要涉及单细胞基因组测序和转录组测序两个方面,分别针对单细胞DNA及RNA进行序列分析和比较。单细胞转录组测序(Single-cell RNA-sequencing, scRNA-seq)是在单个细胞水平对mRNA进行高通量测序的一项新技术,原理是将分离的单个细胞中微量的mRNA通过扩增后再进行高通量测序。单细胞转录组测序能够有效解决组织样本细胞异质性以及常规RNA-seq被掩盖的细胞群内的转录组异质性难题,有助于发现新的稀有细胞类型,并深入了解细胞生长过程中的表达调控机制。

单细胞基因组测序目前主要有两种扩增方法:MALBAC方法及MDA方法,而单细胞转录组目前主要有三种方法:SMART扩增技术、10×genomics技术及Andeplete技术。今天主要和大家比较下单细胞转录组测序的三种常用方法。
一、SMART扩增技术:
SMART技术的出现是一个新的里程碑。这个称作Switching Mechanism At 5’ end of the RNA Transcript(SMART),原理实际上非常简单:在合成cDNA的反应中事先加入的3’末端带Oligo(dG)的SMART引物,由于逆转录酶以mRNA为模板合成cDNA,在到达mRNA的5’末端时碰到真核mRNA特有的“帽子结构”,即甲基化的G时会连续在合成的cDNA末端加上几个(dC),SMART引物的Oligo(dG)与合成cDNA末端突出的几个C配对后形成cDNA的延伸模板,逆转录酶会自动转换模板,以SMART引物作为延伸模板继续延伸cDNA单链直到引物的末端,这样得到的所有cDNA单链的一端有含Oligo(dT)的起始引物序列,另一端有已知的SMART引物序列,合成第二链后可以利用通用引物进行扩增。由于有5’帽子结构的mRNA才能利用这个反应得到能扩增的cDNA,因此扩增得到的cDNA就是全长cDNA。
这个专利的方法是利用逆转录酶内源的末端转移酶活性,只要单管,一步即可完成,不需要额外的cDNA抽提纯化或者沉淀,或者额外的酶反应,只需要少至25ng的mRNA或者50ng的Total RNA就可以得到高质量、高产量的cDNA库,更重要的是得到的cDNA能够代表原有样品中的mRNA的丰度,可以应用于直接扩增基因、构建cDNA文库、已知序列钓全长cDNA(RACE),和用于芯片检测的cDNA探针的扩增等。
通过SMART技术得到的主要是mRNA信息,LncRNA信息大部分会丢失,SMART技术对于RNA的质量要求较高,如果RNA出现降解会导致mRNA 5’端信息丢失。通用引物技术能保证扩增的均一性,但PCR引入的突变不能够分析出来。
二、10×genomics技术:
作为单细胞测序的另一个重要里程碑,10x genomic公司于2016年2月推出10x Chromium Single Cell Gene Expression Solution,此平台整合了仪器、试剂盒和信息学软件,能全面对接illumina测序仪,因此可实现大量大细胞的快速高效标记、测序和分析,获得单细胞水平的基因表达谱和差异情况,并通过对复杂细胞群体进行深入细致分析,绘制大规模单细胞表达图谱。
介绍10X Genomics技术流程前,首先介绍Gel bead(凝胶磁珠)。Gel bead由凝胶珠和磁珠上的一段引物构成,首先在凝胶微珠上种上特定的DNA片段,DNA片段由三部分组成:Barcode、UMI、PolyT组成。Barcode是16个碱基的长度。一共有400万种Barcode,一个微珠是对应于一种Barcode,通过这400万种Barcode,可以把凝胶微珠给区分开。UMI是一段随机序列,也就是说每一个DNA分子,都有自己的UMI序列。10个碱基长的UMI,有100万种序列的变化(4^10  = 1,048,576),UMI的作用是为了区分哪些哪些reads是来自于一个原始cDNA分子,区分基因片段重复还是duplication及区分是真实的SNP位点还是PCR产生的突变。
Gel bead结构

通过10×genomics仪器将单个细胞与单个凝胶微珠通过油相混在一起,形成油包水的小微滴,接下来把细胞膜破掉,让细胞当中的mRNA游离出来。游离出来的mRNA与小液滴中的水相混合,也就是和逆转录酶、结合在凝胶微珠上的核酸引物、以及dNTP底物相接触。
接着,发生逆转录反应。mRNA与凝胶微珠上带标签的DNA分子相结合,在逆转录酶的作用下,逆转录出cDNA来。把这个乳浊液当中所有的水相抽出来,也就是把所有带了标签的cDNA分子都抽出来,再把这些cDNA分子都加上接头,经过PCR扩增,做成illumina的测序文库,放到Illumina的测序仪上进行测序。测序完成之后,进行数据分析。
10×genomics技术一次可以同时得到大量大细胞数据,但只能得到mRNA信息,LncRNA大部分信息丢失,UMI技术能很好去除认为分析引入duplication及PCR引入SNP位点。同样对RNA质量要求高,降解同样会引起5’端信息丢失。

三、Anydeplete 技术

Anydeplete技术首先通过随机引物进行一链合成,一链合成引入核苷酸类似物,用于酶切打断,二链合成同样引入核苷酸类似物用于保证链特异性。然后两端加上接头,接头一条链也带有核苷酸类似物,用于酶切降解。当形成单链文库后,设计特异性引物与rRNA形成文库结合,一轮退火延伸,rRNA文库形成双链结构。Reverse adaptor上带有特异的酶切位点,当形成双链结构酶切位点被识别,切去接头,这样rRNA形成的文库不带有完整的接头,而其他文库带有完整接头,通过PCR扩增富积既能得到想要的信息,包含mRNA及LncRNA信息。同样Anydeplete技术与10×genomics技术一样,包含分子标签,可分析duplication及PCR产生突变位点。
Anydeplete技术能够用于降解性样本,保证5’端及3’端信息的完整,能同时得到mRNA及LncRNA信息,如果只希望得到mRNA信息,Anydeplete技术则会引起一部分数据浪费。
应用和优势对比:

SMART技术可用于单细胞mRNA测序,对RNA质量要求高,RNA降解会引起5’端信息丢失,没有分子标签功能。
10×genomics技术可用于单细胞mRNA测序,对RNA质量要求高,RNA降解会引起5’端信息丢失,有分子标签功能。
Anydeplete技术可用于单细胞mRNA及LncRNA测序,对RNA质量要求不高,可用于降解性样本测序,有分子标签功能。


生信自学网精品课程推荐:
《GEO数据库单细胞测序分析》
《中药复方网络药理学》
《TCGA数据库单基因挖掘套路》



(责任编辑:伏泽   微信:18520221056)

森莘老师微信二维码